[1]王辅明,杨继金.纳米颗粒介导冷冻消融治疗肿瘤的研究进展[J].介入放射学杂志,2024,33(02):197-201.
 WANG Fuming,YANG Jijin..Research progress in nanoparticle- mediated cryoablation therapy for tumors[J].journal interventional radiology,2024,33(02):197-201.
点击复制

纳米颗粒介导冷冻消融治疗肿瘤的研究进展()

PDF下载中关闭

分享到:

《介入放射学杂志》[ISSN:1008-794X/CN:31-1796/R]

卷:
33
期数:
2024年02
页码:
197-201
栏目:
综述
出版日期:
2024-03-08

文章信息/Info

Title:
Research progress in nanoparticle- mediated cryoablation therapy for tumors
作者:
王辅明 杨继金
Author(s):
WANG Fuming YANG Jijin.
Department of Interventional Therapy, Affiliated Changhai Hospital, Naval Medical University, Shanghai 200433, China
关键词:
【关键词】 纳米颗粒 冷冻消融术 肿瘤
文献标志码:
A
摘要:
【摘要】 冷冻消融术是一种基于低温的局部消融方式,被广泛应用于全身实体瘤的治疗。冷冻效率不高和精准度不够是当前冷冻消融术亟待解决的难题。随着纳米科学的不断进步,各种类型的纳米颗粒被开发应用,加载至目标区域可以显著提高冷冻效率,同时具备靶向传递药物以及图像增强等功能,为突破冷冻消融当前的临床应用瓶颈提供了可能。本文主要回顾了当前研究应用于介导冷冻消融术的几种常见纳米颗粒的主要功能以及作用机制,希望对该领域有更加全面的认识,为下一步深化研究和实现临床转化打牢基础。

参考文献/References:

[1] 李虎子,段振东,赵 成,等. TACE联合冷冻消融治疗不可切除肝癌临床疗效的meta分析[J]. 介入放射学杂志, 2021, 30:804- 813.
[2] 曹 非,王 艳,刘长富,等. 氩氦冷冻消融联合全身化疗治疗ⅢB/Ⅳ期肺鳞状细胞癌的疗效分析[J]. 介入放射学杂志, 2018, 27:1045- 1050.
[3] Wang GZ, He XH, Wang Y, et al. Image- guidedcryoablation in unresectable or recurrent advanced colorectal cancer: a retrospective study[J]. J Interv Med, 2018, 1: 92- 97.
[4] 刘 静.纳米冷冻治疗学——纳米医学的新前沿[J]. 科技导报, 2007, 25:67- 74.
[5] He X, Bischof JC. Quantification of temperature and injury response in thermal therapy and cryosurgery[J]. Crit Rev Biomed Eng, 2003, 31: 355- 422.
[6] He X. Thermostability of biological systems: fundamentals, challenges, and quantification[J]. Open Biomed Eng J, 2011, 5: 47- 73.
[7] Bai G, Gao D, Liu Z, et al. Probing the critical nucleus size for ice formation with graphene oxide nanosheets[J]. Nature, 2019, 576: 437- 441.
[8] Yuan F, Zhao G, Panhwar F. Enhanced killing of HepG2 during cryosurgery with Fe3O4- nanoparticle improved intracellular ice formation and cell dehydration[J]. Oncotarget, 2017, 54: 92561- 92577.
[9] Ye P, Kong Y, Chen X, et al. Fe3O4 nanoparticles and cryoablation enhance ice crystal formation to improve the efficiency of killing breast cancer cells[J]. Oncotarget, 2017, 7: 11389- 11399.
[10] Yan JF, Liu J, Zhou YX. Infrared image to evaluate the selective(directional) freezing due to localized injection of thermally important solutions[J]. Conf Proc IEEE Eng Med Biol Soc, 2005, 2005: 3559- 3562.
[11] Yao X, Jovevski JJ, Todd MF, et al. Nanoparticle- mediated intracellular protection of natural killer cells avoids cryoinjury and retains potent antitumor functions[J]. Adv Sci(Weinh), 2020, 7: 1902938.
[12] Chua KJ, Chou SK, Ho JC. An analytical study on the thermal effects of cryosurgery on selective cell destruction[J]. J Biomech, 2007, 40: 100- 116.
[13] Hou Y, Sun X, Dou M, et al. Cellulose nanocrystals facilitate needle- like ice crystal growth and modulate molecular targeted ice crystal nucleation[J]. Nano Lett, 2021, 21: 4868- 4877.
[14] Alkhalifa H, Mohammed F, Taurin S, et al. Inhibition of aquaporins as a potential adjunct to breast cancer cryotherapy[J]. Oncol Lett, 2021, 21: 458.
[15] Ismail M,Bokaee S,Morgan R,et al. Inhibition of the aquaporin 3 water channel increases the sensitivity of prostate cancer cells to cryotherapy[J]. Br J Cancer, 2009, 100: 1889- 1895.
[16] Pogodin S, Werner M, Sommer JU, et al. Nanoparticle- induced permeability of lipid membranes[J]. ACS Nano, 2012, 6: 10555- 10561.
[17] van Lehn RC, Alexander- Katz A. Membrane- embedded nanopa- rticles induce lipid rearrangements similar to those exhibited by biological membrane proteins[J]. J Phys Chem B, 2014, 118: 12586- 12598.
[18] Goel R, Swanlund D, Coad J, et al. TNF- alpha- based accen-tuation in cryoinjury: dose, delivery, and response[J]. Mol Cancer Ther, 2007, 6: 2039- 2047.
[19] Hou Y, Sun X, Yao S, et al. Cryoablation- activated enhanced nanodoxorubicin release for the therapy of chemoresistant mammary cancer stem- like cells[J]. J Mater Chem B, 2020, 8: 908- 918.
[20] Wang H, Agarwal P, Liang Y, et al. Enhanced cancer therapy with cold- controlled drug release and photothermal warming enabled by one nanoplatform[J]. Biomaterials, 2018, 180: 265- 278.
[21] Hou Y, Zhang P, Wang D, et al. Liquid metal hybrid platform- mediated ice- fire dual noninvasive conformable melanoma therapy[J]. ACS Appl Mater Interfaces, 2020, 12: 27984- 27993.
[22] Aarts BM, Klompenhouwer EG, Rice SL, et al. Cryoablation and immunotherapy: an overview of evidence on its synergy[J]. Insights Imaging, 2019, 10: 53.
[23] Sidana A. Cancer immunotherapy using tumor cryoablation[J]. Immunotherapy, 2014, 6: 85- 93.
[24] Regen- Tuero HC, Ward RC, Sikov WM, et al. Cryoablation and immunotherapy for breast cancer: overview and rationale for combined therapy[J]. Radiol Imaging Cancer, 2021, 3: e200134.
[25] Yakkala C, Denys A, Kandalaft L, et al. Cryoablation and imm-unotherapy of cancer[J]. Curr Opin Biotechnol, 2020, 65: 60- 64.
[26] Min Y, Roche KC, Tian S, et al. Antigen- capturing nanoparticles improve the abscopal effect and cancer immunotherapy[J]. Nat Nanotechnol, 2017: 877- 882.
[27] Chen Q, Xu L, Liang C, et al. Photothermal therapy with immune- adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy[J]. Nat Commun, 2016, 7: 13193.
[28] Zhou Q, Gong N, Zhang D, et al. Mannose- derived carbon dots amplify microwave ablation- induced antitumor immune responses by capturing and transferring “danger signals” to dendritic cells[J]. ACS Nano, 2021, 15: 2920- 2932.
[29] 杜 娟,刘雪来. 纳米冷冻手术在肿瘤微创切除中的应用及研究进展[J]. 发育医学电子杂志, 2020, 8:81- 85.
[30] Bae H, Ahmad T, Rhee I, et al. Carbon- coated iron oxide nanoparticles as contrast agents in magnetic resonance imaging[J]. Nanoscale Res Lett, 2012, 7: 44.
[31] Chen M, Li J, Shu G, et al. Homogenous multifunctional micros-pheres induce ferroptosis to promote the anti- hepatocarcinoma effect of chemoembolization[J]. J Nanobiotechnology, 2022, 20: 179.
[32] Gao N, Bozeman EN, Qian W, et al. Tumor penetrating theranostic nanoparticles for enhancement of targeted and image- guided drug delivery into peritoneal tumors following intraperitoneal delivery[J]. Theranostics, 2017, 7: 1689- 1704.
[33] Karunamuni R, Tsourkas A, Maidment AD. Exploring silver as a contrast agent for contrast- enhanced dual- energy X- ray breast imaging[J]. Br J Radiol, 2014, 87: 20140081.
[34] Jackson PA, Rahman WN, Wong CJ, et al. Potential dependent superiority of gold nanoparticles in comparison to iodinated contrast agents[J]. Eur J Radiol, 2010, 75: 104- 109.
[35] Cheheltani R, Ezzibdeh RM, Chhour P, et al. Tunable, biode- gradable gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging[J]. Biomaterials, 2016, 102: 87- 97.
[36] Cho S, Park W, Kim DH. Silica- coated metal chelating- melanin nanoparticles as a dual- modal contrast enhancement imaging and therapeutic agent[J]. ACS Appl Mater Interfaces, 2017, 9: 101- 111.
[37] Yu Z, Gao L, Chen K, et al. Nanoparticles: a new approach to upgrade cancer diagnosis and treatment[J]. Nanoscale Res Lett, 2021, 16: 88.
[38] Chua KJ. Computer simulations on multiprobe freezing of irregularly shaped tumors[J]. Comput Biol Med, 2011, 41: 493- 505.
[39] Ismail M, Morgan R, Harrington K, et al. Immunoregulatory effects of freeze injured whole tumour cells on human dendritic cells using an in vitro cryotherapy model[J]. Cryobiology, 2010, 61: 268- 274.

备注/Memo

备注/Memo:
(收稿日期:2022- 11- 08)
(本文编辑:茹 实)
更新日期/Last Update: 2024-03-08