[1]何欣燃,王黎洲,许 敏,等.N6-甲基腺苷甲基化对小鼠脑缺血-再灌注损伤中微小核糖核酸-155表达和脑损伤的调控作用 [J].介入放射学杂志,2021,30(10):1020-1024.
 HE Xinran,WANG Lizhou,XU Min,et al.Regulatory effect of m6A methylation on miR-155 expression and brain injury in experimental mouse models with cerebral ischemia-reperfusion injury[J].journal interventional radiology,2021,30(10):1020-1024.
点击复制

N6-甲基腺苷甲基化对小鼠脑缺血-再灌注损伤中微小核糖核酸-155表达和脑损伤的调控作用
()

PDF下载中关闭

分享到:

《介入放射学杂志》[ISSN:1008-794X/CN:31-1796/R]

卷:
30
期数:
2021年10
页码:
1020-1024
栏目:
实验研究
出版日期:
2021-10-25

文章信息/Info

Title:
Regulatory effect of m6A methylation on miR-155 expression and brain injury in experimental mouse models with cerebral ischemia-reperfusion injury
作者:
何欣燃 王黎洲 许 敏 安天志 周 石 李 兴
Author(s):
HE Xinran WANG Lizhou XU Min AN Tianzhi ZHOU Shi LI Xing.
School of Medical Imaging, Guizhou Medical University, Guiyang, Guizhou Province 550004, China
关键词:
【关键词】 缺血-再灌注损伤甲基转移酶样蛋白3N6-甲基腺苷脑卒中微小核糖核酸-155
文献标志码:
A
摘要:
【摘要】 目的 研究N6-甲基腺苷(m6A)甲基化对小鼠脑缺血-再灌注损伤(CIRI)模型中微小核糖核酸(microRNA,miRNA,miR)-155表达和脑损伤的调控作用。方法 栓线法构建小鼠大脑中动脉闭塞(MCAO)模型,实时定量聚合酶链反应(RT-qPCR)分析MCAO小鼠脑细胞中pri-miR-155、pre-miR-155及miR-155表达水平,检测建模24 h小鼠脑组织细胞中甲基转移酶样蛋白(METTL)3、miR-155 mRNA表达水平及蛋白表达水平。用慢病毒转染构建METTL3高表达和低表达小鼠模型,再构建MCAO模型,检测右脑组织中pri-miR-155、pre-miR-155和miR-155表达水平。 结果 MCAO小鼠脑组织细胞中pri-miR-155表达水平显著降低(P=0.009),pre-miR-155、miR-155表达水平显著升高(P=0.007、0.000 8);MCAO建模24 h小鼠右脑中METTL3、miR-155表达水平均升高(P<0.05),METTL3蛋白表达水平也随miR-155剂量增加而升高,但METTL14、肾母细胞瘤1相关蛋白(WTAP) mRNA表达水平差异均无统计学意义(P>0.05);小鼠右脑组织中METTL3过表达显著降低pri-miR-155表达水平(P=0.008),同时升高pre-miR-155、miR-155表达水平(P=0.04、0.009); METTL3在细胞中沉默表达显著升高pri-miR-155表达水平(P=0.006),同时降低pre-miR-155、miR-155表达水平(P=0.03、0.009)。结论 CIRI中METTL3异常表达可增强m6A修饰作用,促进pre-miR-155成熟,进而升高miR-155表达水平。这可能为未来缺血性脑卒中患者提供一新治疗策略。

参考文献/References:

[1] Powers WJ, Derdeyn CP, Biller J, et al. 2015 American Heart Association/American Stroke Association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment: a guideline for healthcare professionals from the American Heart Association/American Stroke Association[J]. Stroke, 2015, 46: 3020-3035.
[2] Lesnefsky EJ, Chen Q, Tandler B, et al. Mitochondrial dysfunction and myocardial ischemia-reperfusion: implications for novel therapies[J]. Annu Rev Pharmacol Toxicol, 2017, 57: 535-565.
[3] Caballero-Garrido E, Pena-Philippides JC, Lordkipanidze T, et al. In vivo inhibition of miR-155 promotes recovery after experimental mouse stroke[J]. J Neurosci, 2015, 35: 12446-12464.
[4] Tang C, Klukovich R, Peng H, et al. ALKBH5-dependent m6A demethylation controls splicing and stability of long 3’-UTR mRNAs in male germ cells[J]. Proc Natl Acad Sci USA, 2018, 115: E325-E333.
[5] Ma C, Chang M, Lü H, et al. RNA m6A methylation participates in regulation of postnatal development of the mouse cerebellum[J]. Genome Biol, 2018, 19: 68.
[6] Han J, Wang JZ, Yang X, et al. METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner[J]. Mol Cancer, 2019, 18: 110.
[7] Song H, Feng X, Zhang H, et al. METTL3 and ALKBH5 oppositely regulate m6A modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes[J]. Autophagy, 2019, 15: 1419-1437.
[8] 房裕钞,王黎洲,黄学卿,等. 微小RNA-155通过Notch信号通路对脑缺血-再灌注损伤的影响[J]. 介入放射学杂志, 2019, 28:661-668.
[9] Wang Y, Huang J, Ma Y, et al. MicroRNA-29b is a therapeutic target in cerebral ischemia associated with aquaporin 4[J]. J Cereb Blood Flow Metab, 2015, 35: 1977-1984.
[10] 张 言,王黎洲,杨登科,等. 高密度脂蛋白抑制NLRP3对大鼠脑缺血-再灌注损伤的保护作用及其机制[J]. 介入放射学杂志, 2019, 28:759-764.
[11] Patil DP, Chen CK, Pickering BF, et al. m6A RNA methylation promotes XIST-mediated transcriptional repression[J]. Nature, 2016, 537: 369-373.
[12] Li T, Hu PS, Zuo Z, et al. METTL3 facilitates tumor progression via an m6A-IGF2BP2-dependent mechanism in colorectal carcinoma[J]. Mol Cancer, 2019, 18: 112.
[13] Visvanathan A, Patil V, Arora A, et al. Essential role of METTL3-mediated m6A modification in glioma stem-like cells maintenance and radioresistance[J]. Oncogene, 2018, 37: 522-533.
[14] 方舒东,朱也森. 脑缺血再灌注损伤的病理生理研究进展[J].医学综述, 2006, 12:1114-1116.
[15] Caballero-Garrido E, Pena-Philippides JC, Lordkipanidze T, et al. In vivo inhibition of miR-155 promotes recovery after experimental mouse stroke[J]. J Neurosci, 2015, 35:12446-12464.
[16] Wang J, Li D, Hou J, et al. Protective effects of geniposide and ginsenoside Rg1 combination treatment on rats following cerebral ischemia are mediated via microglial microRNA-155-5p inhibition[J]. Mol Med Rep, 2018, 17: 3186-3193.
[17] Huang H, Weng H, Sun W, et al. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation[J]. Nat Cell Biol, 2018, 20: 285-295.

相似文献/References:

[1]李承志,刘育齐,张 红,等.320排螺旋CT灌注成像和DSA彩色编码成像评估兔急性骨骼肌缺血-再灌注损伤研究 [J].介入放射学杂志,2019,28(06):566.
 LI Chengzhi,LIU Yuqi,ZHANG Hong,et al.320- slice spiral CT perfusion imaging and color- coded DSA imaging for the evaluation of acute skeletal muscle ischemia- reperfusion injury in experimental rabbits[J].journal interventional radiology,2019,28(10):566.

备注/Memo

备注/Memo:
(收稿日期:2020-12-01)
(本文编辑:秋 实)
更新日期/Last Update: 2021-10-13