[1]刘文智,刘 莹,罗院明.斑块偏心分布影响下多组分两相血流动力学数值模拟 [J].介入放射学杂志,2019,28(10):969-973.
 LIU Wenzhi,LIU Ying,LUO Yuanming..Numerical simulation of multicomponent two-phase hemodynamics under the influence of plaque eccentricity distribution[J].journal interventional radiology,2019,28(10):969-973.
点击复制

斑块偏心分布影响下多组分两相血流动力学数值模拟



()

PDF下载中关闭

分享到:

《介入放射学杂志》[ISSN:1008-794X/CN:31-1796/R]

卷:
28
期数:
2019年10期
页码:
969-973
栏目:
实验研究
出版日期:
2019-10-25

文章信息/Info

Title:
Numerical simulation of multicomponent two-phase hemodynamics under the influence of plaque eccentricity distribution
作者:
刘文智 刘 莹 罗院明
Author(s):
LIU Wenzhi LIU Ying LUO Yuanming.
College of Mechanical and Electrical Engineering, Nanchang University, Nanchang, Jiangxi Province 330031, China
关键词:
【关键词】 计算流体力学 多组分两相流 偏心指数 血流动力学 动脉粥样硬化斑块
文献标志码:
A
摘要:
【摘要】 目的 通过研究不同偏心程度狭窄血管的血流动力学分布和血液各组分浓度分布,分析偏心指数(EI)对动脉粥样斑块的影响,探讨动脉粥样斑块形成和生长机制。方法 将血液视为红细胞组成的固相和混合血浆(低密度脂蛋白、高密度脂蛋白、纯净血浆)组成的液相,采用计算流体力学方法对狭窄血管中的血流进行数值模拟,分析斑块偏心分布对血流动力学特性的影响,探讨斑块偏心分布与动脉粥样斑块形成机制间相互作用。结果 斑块偏心分布将导致血流速度加快、斑块下游区域产生回流和回流区血流速度较低。斑块处壁面切应力(WSS)明显增大;斑块EI越大,回流面积越大,斑块处出现WSS更高。 结论 斑块偏心分布使血管壁内皮细胞层更易受损,导致结构与功能异常;血液中各组分在斑块下游的浓度极化现象更为明显,从而使斑块更易生长,造成血管堵塞,增大心脑血管疾病致死概率。

参考文献/References:

[1] Lewis SJ. Prevention and treatment of atherosclerosis: a practitioner’s guide for 2008[J]. Am J Med, 2009, 122: S38- S50.
[2] Labzin LI, Lauterbach MA, Latz E. Interferons and inflammasomes: cooperation and counterregulation in disease[J]. J Allergy Clin Immunol, 2016, 138: 37- 46.
[3] Lin HC, Lii CK, Chen HC, et al. Andrographolide inhibits oxidized LDL- Induced cholesterol accumulation and foam cell formation in macrophages[J]. Am J Chin Med, 2018, 46: 87- 106.
[4] 刘 莹, 罗院明, 殷艳飞, 等. 动脉内流-固耦合作用下两相血流动力学数值模拟[J]. 介入放射学杂志, 2017, 26: 253-257.
[5] 米东华, 赵锡海, 龚浠平, 等. 影响颈动脉粥样硬化易损斑块对称性分布的危险因素分析[J]. 中国卒中杂志, 2017, 12: 609- 613.
[6] Li FY, Wang X. Bilateral symmetry of human carotid artery atherosclerosis: a multi- contrast weighted MR study[J]. Int J Cardiovasc Imaging, 2016, 32: 1219-1226.
[7] Abbas AE, Zacharias SK, Goldstein JA, et al. Invasive characterization of atherosclerotic plaque in patients with peripheral arterial disease using near infrared spectroscopy intravascular ultrasound[J]. Catheter Cardiovasc Interv, 2017, 90: 461- 470.
[8] Gifford SC, Frank MG, Derganc J, et al. Parallel microchannel- based measurements of individual erythrocyte areas and volumes[J]. Biophys J, 2003, 84: 623- 633.
[9] Sun A, Fan Y, Deng X. Intentionally induced swirling flow may improve the hemodynamic performance of coronary bifurcation stenting[J]. Catheter Cardiovasc Interv, 2012, 79:371- 377.
[10] Nixon AM, Gunel M, Sumpio BE. The critical role of hemodynamics in the development of cerebral vascular disease: a review[J]. J Neurosurg, 2010, 112: 1240-1253.
[11] 邓小燕. 动脉狭窄内低密度脂蛋白传输的数值研究: LDL的浓度极化现象[J]. 计算力学学报, 2002, 19: 253- 259.
[12] Sakellarios AI, Raber L, Bourantas CV, et al. Prediction of atherosclerotic plaque development in an in vivo coronary arterial segment based on a multilevel modeling approach[J]. IEEE Trans Biomed Eng, 2017, 64: 1721-1730.
[13] Cunningham KS, Gotlieb AI. The role of shear stress in the pathogenesis of atherosclerosis[J]. Lab Invest, 2005, 85: 9-23.

备注/Memo

备注/Memo:
(收稿日期:2018- 09-10)
(本文编辑:边 佶)
更新日期/Last Update: 2019-10-17