[1]陈 立,邹伟婕,张 宇,等.miR- 29b通过抑制N2a细胞p53凋亡通路减轻氧糖剥夺/再灌注损伤 [J].介入放射学杂志,2018,27(05):451-457.
 CHEN Li,ZOU Weijie,ZHANG Yu,et al.The potential mechanism of miR- 29b in reducing oxygen and glucose deprivation/reperfusion- induced injury through inhibiting the apoptotic pathway of N2a p53 cells[J].journal interventional radiology,2018,27(05):451-457.
点击复制

miR- 29b通过抑制N2a细胞p53凋亡通路减轻氧糖剥夺/再灌注损伤
()

PDF下载中关闭

分享到:

《介入放射学杂志》[ISSN:1008-794X/CN:31-1796/R]

卷:
27
期数:
2018年05期
页码:
451-457
栏目:
实验研究
出版日期:
2018-05-25

文章信息/Info

Title:
The potential mechanism of miR- 29b in reducing oxygen and glucose deprivation/reperfusion- induced injury through inhibiting the apoptotic pathway of N2a p53 cells
作者:
陈 立 邹伟婕 张 宇 张 帅 王黎洲 周 石
Author(s):
CHEN Li ZOU Weijie ZHANG Yu ZHANG Shuai WANG Lizhou ZHOU Shi
Department of Interventional Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province 550004, China
关键词:
【关键词】 miR- 29b 脑缺血 p53基因 细胞凋亡 成神经细胞瘤N2a细胞
文献标志码:
A
摘要:
【摘要】 目的 探讨微小核糖核酸(miR)- 29b过表达是否抑制脑缺血损伤,进一步探讨其潜在机制。方法 体外培养小鼠成神经细胞瘤N2a细胞,构建氧糖剥夺/再灌注(OGD/R)模型,模拟体外脑缺血损伤。N2a细胞随机分为空白对照组、OGD/R组、OGD/R+转染miR- 29b激动剂组、OGD/R+转染miR- 29b抑制剂组、转染miR- 29b激动剂阴性对照组、转染miR- 29b抑制剂阴性对照组。实时定量聚合酶链反应(RT- qPCR)检测各组miR- 29b表达,溴化噻唑蓝四氮唑(MTT)比色法、乳酸脱氢酶(LDH)法检测 miR- 29b激动剂和抑制剂对OGD/R诱导细胞活性和凋亡的影响,Hoechst 33258染色法观察N2a细胞形态学特征及半胱氨酸天冬氨酸特异性蛋白酶(caspase)- 3活性,免疫印迹法定量分析促凋亡蛋白Bax、Bcl- 2及p53表达。结果 经OGD/R处理的N2a细胞中miR- 29b水平明显降低。miR- 29b激动剂显著增加细胞活力,减少LDH漏出率,改善细胞核在凋亡过程中形态学变化,增强OGD/R条件下caspase- 3活性;miR- 29b抑制剂加剧OGD/R诱导的细胞毒性和细胞凋亡。miR- 29b激动剂阻断OGD/R诱导的Bax和p53蛋白表达增加,降低Bcl- 2蛋白表达;miR- 29b抑制剂加剧OGD/诱导的这些凋亡相关蛋白改变。p53基因敲除的p53 siRNA降低细胞活力,增加LDH漏出率,逆转miR- 29b激动剂对细胞损伤的改善作用。结论 miR- 29b通过负调控p53依赖性凋亡途径减轻脑缺血性损伤,可能为缺血性脑卒中提供一潜在的治疗靶点。

参考文献/References:

[1] Jeon JH, Jung HW, Jang HM, et al. Canine model of ischemic stroke with permanent middle cerebral artery occlusion: clinical features, magnetic resonance imaging, histopathology, and immunohistochemistry[J]. J Vet Sci, 2015, 16: 75- 85.
[2] 徐 瑞, 殷世武, 王 转, 等. 支架取栓与动脉溶栓治疗急性缺血性脑卒中比较[J]. 介入放射学杂志, 2016, 25: 1027- 1030.
[3] Shope SR, Schiemann DA. Passive secretory immunity against Salmonella typhimurium demonstrated with foster mouse pups[J]. J Med Microbiol, 1991, 35: 53- 59.
[4] 周腾飞, 朱良付, 李天晓. 影响急性缺血性脑卒中血管内治疗预后的相关因素分析[J]. 介入放射学杂志, 2017, 26: 99- 104.
[5] Anrather J, Iadecola C. Inflammation and stroke: an overview[J]. Neurotherapeutics, 2016, 13: 661- 670.
[6] Zhang R, Xu M, Wang Y, et al. Nrf2- a promising therapeutic target for defensing against oxidative stress in stroke[J]. Mol Neurobiol, 2017, 54: 6006- 6017.
[7] Rami A, Kogel D. Apoptosis meets autophagy- like cell death in the ischemic penumbra: two sides of the same coin?[J]. Autophagy,2008, 4: 422- 426.
[8] Vousden KH, Lane DP. P53 in health and disease[J]. Nat Rev Mol Cell Biol, 2007, 8: 275- 283.
[9] Andrabi SA, Kang HC, Haince JF, et al. Iduna protects the brain from glutamate excitotoxicity and stroke by interfering with poly(ADP- ribose) polymer- induced cell death[J]. Nat Med,2011, 17: 692- 699.
[10] Tu W, Xu X, Peng L, et al. DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke[J]. Cell, 2010, 140: 222- 234.
[11] Culmsee C, Zhu C, Landshamer S, et al. Apoptosis- inducing factor triggered by poly(ADP- ribose) polymerase and Bid mediates neuronal cell death after oxygen- glucose deprivation and focal cerebral ischemia[J]. J Neurosci, 2005, 25: 10262- 10272.
[12] Ouyang YB, Stary CM, Yang GY, et al. microRNAs: innovative targets for cerebral ischemia and stroke[J]. Curr Drug Targets,2013, 14: 90- 101.
[13] Guo Y, Luo F, Liu Q, et al. Regulatory non- coding RNAs in acute myocardial infarction[J]. J Cell Mol Med, 2016, 21: 1013- 1023.
[14] Fujii S, Sugiura T, Dohi Y, et al. MicroRNA in atherothromobosis: is it useful as a disease marker?[J]. Thromb J, 2016, 14(Suppl 1): 21.
[15] Zhu K, Liu D, Lai H, et al. Developing miRNA therapeutics for cardiac repair in ischemic heart disease[J]. J Thorac Dis, 2016, 8: E918- E927.
[16] Ouyang YB, Giffard RG. MicroRNAs regulate the chaperone network in cerebral ischemia[J]. Transl Stroke Res, 2013, 4: 693- 703.
[17] Yin KJ, Deng Z, Huang H, et al. miR- 497 regulates neuronal death in mouse brain after transient focal cerebral ischemia[J]. Neurobiol Dis, 2010, 38: 17- 26.
[18] Liu DZ, Tian Y, Ander BP, et al. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures[J]. J Cereb Blood Flow Metab, 2010, 30: 92- 101.
[19] Tan KS, Armugam A, Sepramaniam S, et al. Expression profile of microRNAs in young stroke patients[J]. PLoS One, 2009, 4:e7689.
[20] Pekarsky Y, Croce CM. Is miR- 29 an oncogene or tumor suppressor in CLL?[J]. Oncotarget, 2010, 1: 224- 227.
[21] Ouyang YB, Xu L, Lu Y, et al. Astrocyte- enriched miR- 29a targets PUMA and reduces neuronal vulnerability to forebrain ischemia[J]. Glia, 2013, 61: 1784- 1794.
[22] Kole AJ, Swahari V, Hammond SM, et al. miR- 29b is activated during neuronal maturation and targets BH3- only genes to restrict apoptosis[J]. Genes Dev, 2011, 25: 125- 130.
[23] Ye Y, Perez- Polo JR, Qian J, et al. The role of microRNA in modulating myocardial ischemia- reperfusion injury[J]. Physiol Genomics, 2011, 43: 534- 542.
[24] Khanna S, Rink C, Ghoorkhanian R, et al. Loss of miR- 29b following acute ischemic stroke contributes to neural cell death and infarct size[J]. J Cereb Blood Flow Metab, 2013, 33: 1197- 1206.
[25] Li L, Stary CM. Targeting glial mitochondrial function for protection from cerebral ischemia: relevance, mechanisms, and the role of microRNAs[J]. Oxid Med Cell Longev, 2016, 2016: 6032306.
[26] Ouyang YB, Xu L, Yue S, et al. Neuroprotection by astrocytes in brain ischemia: importance of microRNAs[J]. Neurosci Lett,2014, 565: 53- 58.
[27] Shi G, Liu Y, Liu T, et al. Upregulated miR- 29b promotes neuronal cell death by inhibiting Bcl2L2 after ischemic brain injury[J]. Exp Brain Res, 2012, 216: 225- 230.
[28] Zhao H, Yenari MA, Cheng D, et al. Bcl- 2 overexpression protects against neuron loss within the ischemic margin following experimental stroke and inhibits cytochrome c translocation and caspase- 3 activity[J]. J Neurochem, 2003, 85: 1026- 1036.
[29] Endo H, Kamada H, Nito C, et al. Mitochondrial translocation of p53 mediates release of cytochrome c and hippocampal CA1 neuronal death after transient global cerebral ischemia in rats[J]. J Neurosci, 2006, 26: 7974- 7983.
[30] Saito A, Hayashi T, Okuno S, et al. Modulation of p53 degradation via MDM2- mediated ubiquitylation and the ubiquitin- proteasome system during reperfusion after stroke: role of oxidative stress[J]. J Cereb Blood Flow Metab, 2005, 25: 267- 280.
[31] Vaseva AV, Moll UM. The mitochondrial p53 pathway[J]. Biochim Biophys Acta, 2009, 1787: 414- 420.
[32] Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death[J]. Physiol Rev, 2007, 87: 99- 163.
[33] Chong MJ, Murray MR, Gosink EC, et al. Atm and Bax cooperate in ionizing radiation- induced apoptosis in the central nervous system[J]. Proc Natl Acad Sci USA, 2000, 97: 889- 894.

相似文献/References:

[1]肖恩华,刘顾岗,李德泰,等.脑再灌流综合征机理研究近况[J].介入放射学杂志,1995,(01):53.
[2]刘英慧,赵 卫,石 潆. 颅内动脉狭窄支架成形术围手术期并发症分析及处理对策[J].介入放射学杂志,2014,(06):550.
 LIU Ying- hui,ZHAO Wei,Shi Ying.. Perioperative complications of stent angioplasty for intracranial arterial stenosis: clinical analysis and therapeutic strategy[J].journal interventional radiology,2014,(05):550.
[3]袁映楠,黄 智,张 帅,等.COL4A1在miR- 29b对N2B细胞氧糖剥夺/再灌注损伤保护作用中的调控机制研究[J].介入放射学杂志,2019,28(12):1156.
 YUAN Yingnan,HUANG Zhi,ZHANG Shuai,et al.Regulation and control mechanism of COL4A1 in the protective effect of mir- 29b on oxygen glucose deprivation/reperfusion injury of N2B cells[J].journal interventional radiology,2019,28(05):1156.

备注/Memo

备注/Memo:
(收稿日期:2017-05-22)
(本文编辑:边 佶)
更新日期/Last Update: 2018-05-13